PydanticAI Integration
PydanticAI provides a high-level interface for building Python applications with LLMs.
Installation
pip install 'pydantic-ai-slim[openai]'Basic Usage
from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel
model = OpenAIModel(
"anthropic/claude-opus-4.5",
base_url="https://api.langmart.ai/v1",
api_key="your-langmart-api-key",
)
agent = Agent(model)
result = await agent.run("What is the meaning of life?")
print(result.data)Structured Output
from pydantic import BaseModel
from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel
class Recipe(BaseModel):
name: str
ingredients: list[str]
instructions: list[str]
prep_time_minutes: int
model = OpenAIModel(
"openai/gpt-5.2",
base_url="https://api.langmart.ai/v1",
api_key="your-langmart-api-key",
)
agent = Agent(model, result_type=Recipe)
result = await agent.run("Give me a simple pasta recipe")
recipe: Recipe = result.data
print(f"Recipe: {recipe.name}")
print(f"Prep time: {recipe.prep_time_minutes} minutes")With Tools
from pydantic_ai import Agent, RunContext
model = OpenAIModel(
"openai/gpt-5.2",
base_url="https://api.langmart.ai/v1",
api_key="your-langmart-api-key",
)
agent = Agent(model)
@agent.tool
def get_weather(ctx: RunContext, city: str) -> str:
"""Get the current weather for a city."""
return f"The weather in {city} is sunny and 72°F"
result = await agent.run("What's the weather like in Tokyo?")
print(result.data)System Prompts
agent = Agent(
model,
system_prompt="You are a helpful cooking assistant.",
)
result = await agent.run("How do I make scrambled eggs?")
print(result.data)